The Forwarding Indices of Graphs -- a Survey
نویسندگان
چکیده
A routing R of a given connected graph G of order n is a collection of n(n−1) simple paths connecting every ordered pair of vertices of G. The vertexforwarding index ξ(G,R) of G with respect to R is defined as the maximum number of paths in R passing through any vertex of G. The vertex-forwarding index ξ(G) of G is defined as the minimum ξ(G,R) over all routing R’s of G. Similarly, the edge-forwarding index π(G,R) of G with respect to R is the maximum number of paths in R passing through any edge of G. The edge-forwarding index π(G) of G is the minimum π(G,R) over all routing R’s of G. The vertexforwarding index or the edge-forwarding index corresponds to the maximum load of the graph. Therefore, it is important to find routings minimizing these indices and thus has received much research attention in the past ten years and more. In this paper we survey some known results on these forwarding indices, further research problems and several conjectures.
منابع مشابه
Expanding and Forwarding
Expanding parameters of graphs (magnification constant, edge and vertex cutset expansion) are related by very simple inequalities to forwarding parameters (edge and vertex forwarding indices). This shows that certain graphs have eccentricity close to the diameter. Connections between the forwarding indices and algebraic parameters like the smallest eigenvalue of the Laplacian or the genus of th...
متن کاملHow to Design Graphs with Low Forwarding Index and Limited Number of Edges
The (edge) forwarding index of a graph is the minimum, over all possible routings of all the demands, of the maximum load of an edge. This metric is of a great interest since it captures the notion of global congestion in a precise way: the lesser the forwardingindex, the lesser the congestion. In this paper, we study the following design question: Given a number e of edges and a number n of ve...
متن کاملChromatic Harmonic Indices and Chromatic Harmonic Polynomials of Certain Graphs
In the main this paper introduces the concept of chromatic harmonic polynomials denoted, $H^chi(G,x)$ and chromatic harmonic indices denoted, $H^chi(G)$ of a graph $G$. The new concept is then applied to finding explicit formula for the minimum (maximum) chromatic harmonic polynomials and the minimum (maximum) chromatic harmonic index of certain graphs. It is also applied to split graphs and ce...
متن کاملSome results on vertex-edge Wiener polynomials and indices of graphs
The vertex-edge Wiener polynomials of a simple connected graph are defined based on the distances between vertices and edges of that graph. The first derivative of these polynomials at one are called the vertex-edge Wiener indices. In this paper, we express some basic properties of the first and second vertex-edge Wiener polynomials of simple connected graphs and compare the first and second ve...
متن کاملOn multiplicative Zagreb indices of graphs
Todeschini et al. have recently suggested to consider multiplicative variants of additive graph invariants, which applied to the Zagreb indices would lead to the multiplicative Zagreb indices of a graph G, denoted by ( ) 1 G and ( ) 2 G , under the name first and second multiplicative Zagreb index, respectively. These are define as ( ) 2 1 ( ) ( ) v V G G G d v and ( ) ( ) ( ) ( ) 2...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- CoRR
دوره abs/1204.2604 شماره
صفحات -
تاریخ انتشار 2012